trong một cuộc thi pha chế

Trải qua gần 15 năm hình thành và phát triển, giờ đây ngôi trường này tự hào là một trong những trung tâm dạy pha chế Đà Nẵng chuyên nghiệp và chất lượng bậc nhất. Địa chỉ: 30-32 Phan Đăng Lưu, Q. Hải Châu, TP.Đà Nẵng. Số điện thoại: 0236 3794 999. Email: cdpd.edu@gmail.com Duy chỉ có điều, tác phẩm văn học viết về Trà lại hiếm, hiếm lắm. Trong đó có một tác phẩm để đời, của một nhà văn mà hàng ngàn người mến mộ. Nguyễn Tuân - vua ký sự, cùng giọng điệu chậm rãi trong từng mạch văn khiến cho từng tác phẩm vô cùng sâu lắng Sao tử vi phá quân đồng cung. Admin - 19/05/2021 1,406. Phá quân là sao thứ bảy của Bắc Đẩu, thuộc dương Thủy. Trong Đẩu Số, sao Phá quân là "tướng tiên phong", cho nên chủ về "xung phong", mà ko chủ về "lui lại phòng thủ". Phàm người có Phá quân thủ Vay Tiền Nhanh Home. Gọi số lít nước ngọt loại I là x và số lít nước ngọt loại II là y. Khi đó ta có hệ điều kiện về vật liệu ban đầu mà mỗi loại được cung cấp \\left\{ \begin{array}{l} 10x + 30y \le 210\\ 4x + y \le 24\\ x + y \le 9\\ x,y \ge 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x + 3y \le 210\\ 4x + y \le 24\\ x + y \le 9\\ x,y \ge 0 \end{array} \right.\left * \right\ Điểm thưởng đạt được P = 80x + 60y Bài toán đưa về tìm giá trị lớn nhất của biểu thức P trong miền D được cho bởi hệ điều kiện * Biến đổi biểu thức \P = 80x + 60y \Leftrightarrow 80x + 60y - P = 0\ đây là họ đường thẳng \{\Delta _{\left P \right}}\ trong hệ tọa độ Oxy. Miền D được xác định trong hình vẽ bên dưới Giá trị lớn nhất của P ứng với đường thẳng \{\Delta _{\left P \right}}\ đi qua điểm A5;4, suy ra \ + - P = 0 \Rightarrow P = 640 = {P_{\max }}\ Câu hỏi Trong một cuộc thi pha chế, hai đội chơi A, B được sử dụng tối đa 24g hương liệu, 9 lít nước và 210g đường để pha chế nước cam và nước táo. Để pha chế 1 lít nước cam cần 30g đường, 1 lít nước và 1g hương liệu; pha chế 1 lít nước táo cần 10g đường, 1 lít nước và 4g hương liệu. Mỗi lít nước cam nhận được 60 điểm thưởng, mỗi lít nước táo nhận được 80 điểm thưởng. Đội A pha chế được a lít nước cam và b lít nước táo và dành được điểm thưởng cao nhất. Hiệu số a-b là A. - 6 B. 1 C. 3 D. - 1 Trong một cuộc thi pha chế, mỗi đội chơi được sử dụng tối đa 24g hương liệu, 9 lít nước và 210g đường để pha chế nước cam và nước táo. Để pha chế 1 lít nước cam cần 30g đường, 1 lít nước và 1g hương liệu; còn để pha chế 1 lít nước táo, cần 10g đường, 1 lít nước và 4g hương liệu. Mỗi lít nước cam nhận được 60 điểm và mỗi lít nước táo nhận được 80 điểm. Gọi x, y lần lượt là số lít nước cam và nước táo mà mỗi đội cần pha chế sao cho tổng điểm đạt được là lớn nhất. Tính T...Đọc tiếp Xem chi tiết Trong một cuộc thi pha chế, mỗi đội chơi được sử dụng tối đa 24 gam hương liệu, 9 lít nước và 210 gam đường để pha chế nước ngọt loại I và nước ngọt loại II. Để pha chế 1 lít nước ngọt loại I cần 10 gam đường, 1 lít nước và 4 gam hương liệu. Để pha chế 1 lít nước ngọt loại II cần 30 gam đường, 1 lít nước và 1 gam hương liệu. Mỗi lít nước ngọt loại I được 80 điểm thưởng, mỗi lít nước ngọt loại II được 60 điểm thưởng. Hỏi số điểm thưởng cao nhất có thể của mỗi đội trong cuộc thi là bao nhiêu ? tiếp Xem chi tiết giải bài toán bằng cách lập phương trìnhhai bể chứa nước chứa 800 lít và 1300 lít. người ta tháo ra cùng một lúc ở bể thứ nhất mỗi phút 15 lít và ở bể thứ hai mỗi phút 25 lít. hỏi sau bao lâu số nước còn lại ở bể thứ nhất bằng 2/3 số nước còn lại ở bể thứ hai. Xem chi tiết Một bồn nước được thiết kế với chiều cao 8dm, ngang 8dm và dài 2m. Bề mặt cong đều nhau và mặt cắt ngang là một hình parabol như hình vẽ dướiHỏi bồn chứa được tối đa bao nhiêu lít nước? A. 1280 3 l í t B. 1280 π...Đọc tiếp Xem chi tiết Một vòi nước chảy vào 1 cái bể từ lúc 6 giờ 50 phút đến 8 giờ 15 phút thì được 1,36\m^3\ nước . Hỏi mỗi phút vòi đó chảy được bao nhiêu lít nước? 1lít =1\dm^3\ Xem chi tiết Nhà xe khoán cho hai tài xế An và Bình mỗi người lần lượt nhận 32 lít và 72 lít xăng trong một tháng. Biết rằng, trong một ngày tổng số xăng cả hai người sử dụng là 10 lít. Tổng số ngày ít nhất để hai tài xế sử dụng hết số xăng được khoán là A. 4 ngày. B. 10 ngày C. 20 ngày D. 15 ngàyĐọc tiếp Xem chi tiết Một bể nước dạng hình hộp chữ nhật có các kích thước số đo ở trong lòng bể là chiều dài 4m, chiều rộng 3m, chiều cao 2,5m. Biết rằng 80% thể tích của bể đang chứa nước. Hỏia Trong bể có bao nhiêu lít nước?b Mức nước trong bể cao bao nhiêu mét? Xem chi tiết Một bể nước hình hộp chữ nhật có kích thước đo trong lòng bể là dài 2m, rộng 1,5m và cao 12dm, biết lượng nước trong bể đang có chiếm 75% thể tích bể. Hỏi phải đổ thêm bao nhiêu lít nước nữa để đầy bể? Xem chi tiết 1 vòi nước chảy vào bể trong 3h thì đầy. Giờ thứ 1 chảy 10% bể. Giờ thứ 2 chảy được \\frac{2}{8}\ .Giờ thứ 3 chảy được 1002 lít và tràn ra 2 lít. Tính thể tích của bể. Tính chiều cao của bể.Biết bể là hình hộp chữ nhật có đáy là hình chữ nhật có kích thước 3m x4m Xem chi tiết Gọi \x\ và \y\ lần lượt là số lít nước loại A và B cần pha chế. Điều kiện \x \ge 0,\,\,y \ge 0.\ Số hương liệu cần dùng để pha chế hai loại lít nước A và B là \0,5x + 2y \le 12.\ Số lít nước cần dùng để pha chế hai loại nước A và B là \x + y \le 9.\ Số g đường cần dùng để pha chế hai loại lít nước A và B là \45x + 15y \le 315.\ Từ đó, ta có hệ bất phương trình \\left\{ {\begin{array}{*{20}{c}}{x \ge 0}\\{y \ge 0}\\{0,5x + 2y \le 12}\\{x + y \le 9}\\{45x + 15y \le 315}\end{array}.} \right.\ Số điểm thưởng của đội chơi nhận được là \F\left {x;y} \right = 60x + 80y \to \max \ Biểu diễn miền nghiệm của hệ bất phương trình \\left\{ {\begin{array}{*{20}{c}}{x \ge 0}\\{y \ge 0}\\{0,5x + 2y \le 12}\\{x + y \le 9}\\{45x + 15y \le 315}\end{array}} \right.\trên cùng mặt phẳng tọa độ \Oxy.\ Xác định miền nghiệm của bất phương trình \x \ge 0\ là nửa mặt phẳng bờ \dx = 0\ chứa điểm \\left {1;0} \right.\ Xác định miền nghiệm của bất phương trình \y \ge 0\ là nửa mặt phẳng bờ \{d_1}y = 0\ chứa điểm \\left {0;1} \right.\ Xác định miền nghiệm của bất phương trình \ + 2y \le 12\. Vẽ đường thẳng \{d_2} + 2y = 12\ trên mặt phẳng tọa độ \Oxy.\ Chọn \O\left {0;0} \right\ là điểm không thuộc đường thẳng \{d_2}\ và thay vào biểu thức \0,5x + 2y,\ ta được \0, + = 0 < 12\ nên miền nghiệm của bất phương trình \ + 2y \le 12\ là nửa mặt phẳng bờ \{d_2}\ chứa điểm \O\left {0;0} \right\. Xác định miền nghiệm của bất phương trình \x + y \le 9\. Vẽ đường thẳng \{d_3}x + y = 9\ trên mặt phẳng tọa độ \Oxy.\ Chọn \O\left {0;0} \right\ là điểm không thuộc đường thẳng \{d_3}\ và thay vào biểu thức \x + y,\ ta được \0 + 0 = 0 < 9\ nên miền nghiệm của bất phương trình \x + y = 9\ là nửa mặt phẳng bờ \{d_3}\ chứa điểm \O\left {0;0} \right\. Xác định miền nghiệm của bất phương trình \45x + 15y \le 315\. Vẽ đường thẳng \{d_4}45x + 15y = 315\ trên mặt phẳng tọa độ \Oxy.\ Chọn \O\left {0;0} \right\ là điểm không thuộc đường thẳng \{d_4}\ và thay vào biểu thức \45x + 15y,\ ta được \ + = 0 < 315\ nên miền nghiệm của bất phương trình \45x + 15y \le 315\ là nửa mặt phẳng bờ \{d_4}\ chứa điểm \O\left {0;0} \right\. Miền nghiệm của hệ bất phương trình \\left\{ {\begin{array}{*{20}{c}}{x \ge 0}\\{y \ge 0}\\{0,5x + 2y \le 12}\\{x + y \le 9}\\{45x + 15y \le 315}\end{array}} \right.\là ngũ giác \OABCD\ với \A\left {0;6} \right,\,\,B\left {4;5} \right,\,\,C\left {6;3} \right,\,\,D\left {7;0} \right\ Ta có \F\left {0;6} \right = + = 480,\ \F\left {4;5} \right = + = 640,\ \F\left {0;0} \right = + = 0,\ \F\left {6;3} \right = + = 600,\ \F\left {7;0} \right = + = 420.\ \ \Rightarrow \ giá trị lớn nhất là \F\left {4;5} \right = 640.\ Vậy vần pha chế 4 lít nước loại A và 5 lít nước loại B thì số điểm thưởng nhận được là lớn nhất.

trong một cuộc thi pha chế